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Abstract. We study the spin correlations in two- and three-dimensional electron liquids within the sum-rule
version of the self-consistent field approach of Singwi, Tosi, Land, and Sjölander. Analytic expressions for
the spin-antisymmetric static structure factor and the corresponding local-field correction are obtained with
density dependent coefficients. We calculate the spin-dependent pair-correlation functions, paramagnon
dispersion, and static spin-response function within the present model, and discuss the spin-density wave
instabilities in double-layer electron systems.

PACS. 71.10.-w Theories and models of many electron systems – 71.45.Gm Exchange, correlation, dielec-
tric and magnetic functions, plasmons – 73.20.Dx Electron states in low-dimensional structures (superlat-
tices, quantum well structures and mutlilayers)

1 Introduction

The study of exchange and correlation effects in homo-
geneous quantum electron liquids is a subject of continu-
ing interest. The electron system interacting via the 1/r
Coulomb potential offers a suitable model for metals and
doped semiconductors. It is also important as a testing
ground for various many-body theories. Advances in tech-
nology have made it possible to manufacture lower di-
mensional systems (quantum-wells and wires) with many
interesting experimental results, which in turn stimulate
further theoretical work. The random-phase approxima-
tion [1] (RPA) has been very successful in describing the
dielectric properties of the interacting electron system in
the high density limit. In particular, the static structure
factor, the pair-correlation function, the plasmon disper-
sion relation, and ground-state energy are widely inves-
tigated. As the density of the electron liquid is lowered
the exchange and correlation effects become very impor-
tant, eventually driving the system into a crystal phase.
A physically motivated approximation scheme to take the
correlations into account is provided by Singwi et al. [2]
(STLS) in terms of the local-field factors. The local-fields
take the repulsion hole around an electron into account to
describe the correlation effects. Although semi-classical in
its origin, the conceptual simplicity and ease with which
one can implement it computationally, have led to numer-
ous applications of the method [3] with varying success.
A major drawback of the STLS approach has been that
the compressibility sum-rule is not satisfied, namely the
compressibility evaluated directly from the ground-state
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energy is not equal to that calculated using the long-
wavelength limit of the local-field correction [4]. This was
later corrected in a related approach by Vashishta and
Singwi [5].

A sum-rule version of the STLS approximation, which
uses the exact limiting behavior of the local-field cor-
rections, is formulated by Gold [6] for a charged Bose
gas at zero temperature. In subsequent work, Gold and
Calmels [7,8] extended the sum-rule approach to treat
electron liquids (fermions), in various dimensions. In this
paper we study the response of two-dimensional (2D) and
three-dimensional (3D) electron systems to a weak exter-
nal magnetic field, namely the wave vector- and frequency-
dependent paramagnetic susceptibility, within the sum-
rule version of the STLS approach developed for density
response by Gold and Calmels [7]. Since our study is a
natural extension of that of Gold and Calmels [7] to the
spin response, our results are largely complementary to
theirs. Despite its shortcoming alluded above (and also
discussed later) we use the STLS method, firstly to ex-
tend the Gold and Calmels [7] approach to study the spin
response within the same approximation. Our aim is to de-
velop a simple parametrization for the spin-antisymmetric
local-field factor much as it is done for the spin-symmetric
part. We also provide a theoretical basis from which the
formulation of Gold and Calmels [7] follow naturally. We
assume that the electron systems are embedded in a uni-
form positive background to maintain charge neutrality,
and they interact via the 1/r Coulomb potential in both
two- and three-dimensions.

The spin correlations in a 3D electron system within
the self-consistent field approximation (or STLS) was first
studied by Lobo et al. [9]. Diagrammatic approaches
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employing the ladder sums were utilized to treat accu-
rately the short-range part of the Coulomb interaction
[10,11]. In 2D, Moudgil et al. [12] used the dynamic and
static local-fields to study the spin correlations. There has
been many unifying attempts to construct the local-field
corrections for 3D and 2D electron systems, incorporat-
ing their small and large wave vector limiting behavior
[13–17]. The enhancement of the paramagnetic suscepti-
bility (spin-response function) of an interacting electron
system over its Pauli value is due to short-range Coulomb
and exchange effects. We investigate the correlation ef-
fects within the sum-rule version of the STLS approach.
The density and spin-density responses are combined to
determine the spin-dependent pair-correlation functions
in the system. The dispersion relation for collective ex-
citations of spin fluctuations (paramagnons) is obtained.
We find that the 2D and 3D electron liquids show a para-
magnetic instability at low densities, as predicted by the
full STLS calculations [9,12] and other approaches [18].
We also explore the possibility of spin-density wave insta-
bility in double layer electron systems, using the results
obtained in the present work. Finally, we mention that it
has already been shown [19] that the spin correlations can
be treated within the Gold-Calmels method [6–8], for a
short-range potential.

The rest of this paper is organized as follows. In Sec-
tion 2 we outline the method of sum-rule version of STLS
in application to spin-density response. We obtain the self-
consistent spin-antisymmetric structure factor and local-
field correction for 3D and 2D electron gases in Sections
3 and 4, respectively. The finite width effects in 2D elec-
tron systems is investigated in Section 5, and the collective
spin excitations within our model is discussed in Section
6. In Section 7 we study the spin-density wave instabilities
in double-layer systems. Finally, we give a general discus-
sion of our results in Section 8. We conclude with a brief
summary.

2 Theory and model

In the many-body description of homogeneous electron
liquids, the wave vector- and frequency-dependent density
and spin-density response functions play a central role.
They characterize the response of the system to external
longitudinal fields, and are expressed in the form

χd(q, ω) =
χ0(q, ω)

1− vq[1−Gs(q)]χ0(q, ω)
, (1)

and

χs(q, ω) =
χ0(q, ω)

1 + vqGa(q)χ0(q, ω)
, (2)

where χ0(q, ω) is the free-electron polarizability [20] taken
as a reference, vq is the bare Coulomb potential (for the
D-dimensional electron gas), and Gs(q) and Ga(q) are the
spin-symmetric and spin-antisymmetric static local-field
corrections describing the many-body exchange and cor-
relation effects. The above expressions for χd(q, ω) and

χs(q, ω) may be regarded as defining relations, provided
the local-fields Gs and Ga are accurately calculated. The
fluctuation-dissipation theorem enables us to write the
static structure factor Ss(q), and the magnetic structure
factor Sa(q), in terms of the response functions, viz.,

Ss,a(q) = −
1

nπ

∫ ∞
0

dω χd,s(q, iω) , (3)

where the frequency integration is to be performed along
the imaginary axis to better capture the collective mode
contributions.

In the following we outline the basic steps of obtaining
closed-form expressions for the structure factors and local-
field corrections in a D-dimensional (D = 2 or 3) electron
liquid. Our approach is largely based on the generalized
mean spherical approximation [13,21]. In the MSA, the
free-electron gas response function χ0(q, ω) reduces to a
simple form

χMSA
0 (q, ω) =

2nεq
ω2 − [εq/S0(q)]2

, (4)

where εq = q2/2m is the free-particle energy, and S0(q) is
the static structure factor for the noninteracting electron
gas (i.e. the result of the Hartree-Fock approximation).
Note that χMSA

0 differs from the exact expression provided
by the Lindhard function χ0(q, ω). In χMSA

0 the particle-
hole pair continuum is approximated by a collective mode
with energy εq/S0(q), much the same as Feynman excita-
tion spectrum for bosons. If we now replace χ0(q, ω) by
χMSA

0 (q, ω) in equations (1, 2), we obtain the generalized
MSA (including the local-field corrections) to the density
and spin-density responses in an interacting electron sys-
tem. Performing the frequency integral of equation (3) we
obtain the static structure factors

Ss(q) =
εq

[[εq/S0(q)]2 + vq[1−Gs(q)]2nεq]
1/2

, (5)

and

Sa(q) =
εq

[[εq/S0(q)]2 − vqGa(q)2nεq]
1/2
· (6)

The above equations provide closed form expressions for
the static structure factors in terms of the local-field cor-
rections, and were first obtained by Iwamoto et al. [13] in
a related work. Gold and Calmels [7] postulated the form
of equation (5) in their STLS based self-consistent calcula-
tion of the spin-symmetric structure factor and the local-
field correction. Here, we concentrate on the spin-density
response and develop a similar self-consistent scheme to
calculate the spin-antisymmetric structure factor Sa(q)
and corresponding local-field factorGa(q), in order to com-
plement the earlier work of Gold and Calmels [7].

The density and spin-density response function of equa-
tions (1, 2) also define the effective potentials, in the mean-
field approximation, such that ψs(q) = vq[1 − G(q)], and
ψa(q) = vqGa(q). Gs(q) and Ga(q) are the static local-field
factors arising from the short-range Coulomb correlations
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and the exchange-correlation effects for the density and
spin-density responses, respectively. In the approximation
scheme of Singwi et al. [2] they are given, respectively,
as [2,9]

Gs,a(q) =
1

n

∫
dDk

(2π)D
k · q

q2

vk

vq
[1− Ss,a(q − k)] , (7)

where n is the electron density, and D = 2, 3 is the di-
mensionality. The integral expressions for Gs(q) and Ga(q)
follow from the assumption that the two-particle distri-
bution function may be decoupled as a product of two
one-particle distribution functions multiplied by the pair-
correlation function. More precisely, the Gs(q) and Ga(q)
are reduced to become functionals of the sum and differ-
ence between the correlation functions of pairs of particles
with parallel and antiparallel spins [2,9]. In the sum-rule
version of the STLS scheme as introduced by Gold [6] and
Gold and Calmels [7] the long- and short-wavelength lim-
its of the local-field factors Gs(q) and Ga(q) are utilized
to simplify the full integral expressions, and parametric
representations are obtained. When the local-field factors
are absent (i.e. set equal to zero), the response functions
reduce to their familiar forms in the random-phase approx-
imation (RPA) and Hartree-Fock (HF) approximation, re-
spectively.

A major shortcoming of the present STLS approxi-
mation in the study of spin correlations is that the spin-
susceptibility calculated from the ground-state energy
(assumed to be known as a function of spin-polarization
parameter or magnetization) will differ that calculated us-
ing the long-wavelength limit of Ga(q). This has been rec-
tified from a theoretical standpoint, analogous to the case
of density response, by Vashishta and Singwi [22]. To make
connection with the earlier calculations [7] of Gs(q) within
the same approximation, we shall ignore this inconsistency
as was done in other applications [7,9,12].

3 Three-dimensional electron gas

We first consider the specific model of a 3D electron gas. It
consists of electrons interacting via the Coulomb potential
(in Fourier space) vq = 4πe2/ε0q

2, in the presence of a neu-
tralizing uniform background. The density parameter rs =
(4πnaB/3)−1/3, given in terms of the number density n,
and the Bohr radius aB = ε0/me

2 (where ε0 is the dielec-
tric constant of the background), completely characterizes
the system at zero temperature. The Fermi momentum kF

is related to the electron density through n = k3
F/3π

2. We

adopt a new screening wave number qs = 121/4/(r
3/4
s aB),

introduced by Gold and Calmels [7], to scale the momen-
tum and length variables in the subsequent calculations.
In these units, the model spin-antisymmetric static struc-
ture factor takes the form

Sa(x) =

[
[S0(x)]−2 −

Ga(x)

x4

]−1/2

, (8)

Table 1. The parameters C3D
1 and C3D

2 for the local-field cor-
rection in a 3D electron gas for various values of rs.

rs C3D
1 (rs) C3D

2 (rs)

0.01 0.4977 14.12
0.1 0.4778 4.313
0.5 0.4028 1.668
1 0.3331 1.003
2 0.2424 0.5417
3 0.1877 0.3570
4 0.1518 0.2599
5 0.1267 0.2019
6 0.1084 0.1646
7 0.09457 0.1402
8 0.08404 0.1261

where x = q/qs, and S0(x) is the familiar HF static struc-
ture factor. For the spin-antisymmetric local-field correc-
tion we choose the following Hubbard approximation type
parametrized expression

Ga(x) =
C3D

1 (rs)x
2

C3D
2 (rs) + x2

, (9)

where the coefficients C3D
i (rs) (i = 1, 2) are to be deter-

mined from the small and large q behavior of Ga(x) given
in the STLS approximation. More specifically, we have

C3D
1 (rs)

C3D
2 (rs)

=
8r

3/4
s

3π121/4

∫ ∞
0

dx [1− Sa(x)] , (10)

and

C3D
1 (rs) =

8r
3/4
s

π121/4

∫ ∞
0

dxx2[1− Sa(x)] . (11)

These coupled integral equations are solved for the pa-
rameters C3D

i (rs) at each rs. They are much easier to
solve than the full STLS equations as noted by Gold and
Calmels [7] who investigated the density response in elec-
tron liquids using a similar scheme.

We summarize our results in Table 1, for the coeffi-
cients C3D

i (rs), tabulating them for various rs values. In
contrast to the density-response case, the above set of
equations for the spin-density response fail to provide self-
consistent solutions beyond rs ' 8. This may be taken as
a signal for a spin-density related instability developing in
the system. A similar kind of instability was also encoun-
tered in the solution of full STLS equations which may be
related to the transition to paramagnetic phase as found
by Misawa [23] and Rajagopal and Kimball [18]. We dis-
cuss the physical meaning of this numerical instability in
Section 8.

Once the rs-dependent coefficients in the parametrized
model of the spin-antisymmetric local-field factor Ga(x)
are determined, we can investigate various physical quan-
tities of interest. We first display the spin-density struc-
ture factor Sa(q) for a 3D electron gas in Figure 1. Unlike
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Fig. 1. The spin-antisymmetric static structure factor Sa(q),
within the sum-rule version of the STLS approach for a 3D
electron gas, at rs = 1 (dotted line), rs = 4 (dashed line), and
rs = 7 (solid line).

Fig. 2. The spin-antisymmetric static local-field correction
Ga(q), within the sum-rule version of the STLS approach for a
3D electron gas, at rs = 1 (dotted line), rs = 4 (dashed line),
and rs = 7 (solid line).

its spin-symmetric counterpart Ss(q), Sa(q) exhibits a
slight peak around q ' 2kF with increasing rs. The corre-
sponding local-field factor Ga(q) is shown in Figure 2. As
the density is lowered, the magnitude of Ga(q) decreases,
and it retains a constant value for q & qs. Similar behav-
ior in Ga(q) was also found in the calculations of Iwamoto
et al. [13].

From the knowledge of Sa(q), one can determine the
spin-antisymmetric pair-correlation function by the
Fourier transform

ga(r) =
1

n

∫
d3q

(2π)3
e−iq·r [Sa(q)− 1] , (12)

and in particular, its value at zero separation (r = 0) is
easily calculated. We find that ga(0) = −C3D

1 (rs). Com-
bining this result with the spin-symmetric pair-correlation
function gs(r), calculated within the same approximation
[7] we can deduce the spin-dependent pair correlation func-
tions

g↑↑(r) = gs(r) + ga(r), and g↑↓(r) = gs(r)− ga(r).
(13)

Fig. 3. The spin-dependent pair-correlation functions g↑↑(0),
and g↑↓(0) at zero separation obtained from gs(0) and ga(0),
as a function of rs for a 3D electron gas. The solid circles are
from the full STLS calculation of reference [9].

gs(r) gives the probability of finding an electron at r, if
another electron is located at the origin, irrespective of
their spins. For some applications, the decomposition of
gs(r) into g↑↑(r) and g↑↓(r) is quite useful. In Figure 3 we
show g↑↑(0) and g↑↓(0) combining our results and those
of Gold and Calmels [7], as a function of rs. g↑↓(0) satis-
fies the positive definiteness requirement up to rs ∼ 6, as
in the original STLS calculation [9]. g↑↑(0), on the other
hand, is slightly negative, indicating that the short-range
correlations for parallel spins are overestimated in the
STLS approximation. Technically, the local-field correc-
tions take Pauli exchange-hole into account but neglect
the Coulomb-hole contribution. In extended versions of
the theory it is possible to improve this situation by in-
corporating the screening function into the self-consistent
scheme [2]. The sum-rule version reproduces the original
STLS results [9] of g↑↑(0) and g↑↓(0) quite well.

4 Two-dimensional electron gas

In a 2D electron gas within the same model, we assume
that the bare Coulomb potential is still given by e2/r in
configuration space, which has a Fourier transform
vq = 2πe2/q. The RPA parameter in this case is de-
fined as rs = (πna2

B)−2, where n denotes the areal den-
sity of the electrons. Using the relation n = k2

F/2π (we
assume a single-valley), the scaling parameter becomes

qs = 2/(r
2/3
s aB). The model spin-density structure factor

is expressed as

Sa(x) =

[
[S0(x)]−2 −

Ga(x)

x3

]−1/2

, (14)

in which the noninteracting structure factor S0(q) appro-
priate for a 2D electron gas is used. Similar arguments as
in the 3D case leads us to propose a parametrized spin-
antisymmetric local-field factor of the form

Ga(x) =
C2D

1 (rs)x

[[C2D
2 (rs)]2 + x2]1/2

. (15)
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Table 2. The parameters C2D
1 and C2D

2 for the local-field cor-
rection in a strictly 2D electron gas for various values of rs.

rs C2D
1 (rs) C2D

2 (rs)

0.01 0.4948 3.837
0.1 0.4517 1.666
0.5 0.3168 0.7479
1 0.2242 0.4550
1.5 0.1711 0.3220
2 0.1373 0.2468
2.5 0.1142 0.1996
2.8 0.1036 0.1796

Fig. 4. The spin-antisymmetric static structure factor Sa(q),
within the sum-rule version of the STLS approach for a 2D
electron gas, at rs = 0.5 (dotted line), rs = 1 (dashed line),
and rs = 2 (solid line).

The coefficients C2D
i (rs) are now determined by the non-

linear equations

C2D
1 (rs)

C2D
2 (rs)

= r2/3
s

∫ ∞
0

dx [1− Sa(x)] , (16)

and

C2D
1 (rs) = 2r2/3

s

∫ ∞
0

dxx[1− Sa(x)] . (17)

The results of our self-consistent calculations are displayed
in Table 2. We find that beyond rs & 3, it becomes very
difficult to obtain a solution. Similar difficulties were en-
countered in the full STLS calculations [12] for rs > 4. The
spin-antisymmetric static structure factor and the local-
field correction in a 2D electron liquid are illustrated in
Figures 4 and 5, respectively. Our results are in good
agreement with the full STLS calculations [12] of the same
quantities. In particular the peak structure in Sa(q) is well
reproduced. The spin dependent pair-correlation functions
at the origin are shown in Figure 6. As in the 3D case, the
spin-antisymmetric pair-correlation function in our model
is given by ga(0) = −C2D

1 (rs). Combining this result with
the earlier findings of Gold and Calmels [7] yields g↑↑(0)
and g↑↓(0) shown in Figure 6. We find good agreement
with the full STLS calculations of Moudgil et al. [12] for

Fig. 5. The spin-antisymmetric static local-field correction
Ga(q), within the sum-rule version of the STLS approach for a
2D electron gas, at rs = 0.5 (dotted line), rs = 1 (dashed line),
and rs = 2 (solid line).

Fig. 6. The spin-dependent pair-correlation functions g↑↑(0),
and g↑↓(0) at zero separation obtained from gs(0) and ga(0),
as a function of rs for a 2D electron gas. The solid circles are
from the full STLS calculation of reference [12].

the correlation function g↑↓(0). Sato and Ichimaru [24]
considered second-order exchange processes in the spin-
dependent correlations for 2D electron systems and gave a
parametrized expression for the spin-antisymmetric local-
field factor. Calculations of higher-order spin correlations
(and the associated local-field corrections) incorporating
nonlinear effects using density-functional theoretical meth-
ods were recently performed by Iyetomi and Ichimaru [25].

5 Two-dimensional electron gas with finite
width effects

The model of a 2D electron gas has found a wealth of ap-
plications both from fundamental and practical points of
view [26]. Electrons confined in the interface of
GaAs/GaAlAs is a striking example, in which several key
experiments reveal interesting physical phenomena.
Among the various models, describing the finite exten-
sion of electrons in the perpendicular direction, the infi-
nite quantum-well of width L is widely used. As a result,
the interaction potential is given by vq = 2πe2F (q)/ε0q,
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Table 3. The parameters C2D
1 and C2D

2 for the local-field cor-
rection in a quantum-well of width L = aB, and a heterojunc-
tion for various values of rs.

quantum-well heterojunction

rs C2D
1 (rs, L) C2D

2 (rs, L) C2D
1 (rs, b) C2D

2 (rs, b)

0.01 0.5000 40.76 0.4998 11.67

0.1 0.4969 4.294 0.4952 3.660

0.5 0.4273 1.242 0.4592 1.635

1 0.3174 0.7016 0.4048 1.096

1.5 0.2369 0.4727 0.3513 0.8302

2 0.1838 0.3479 0.3030 0.6618

2.5 0.1480 0.2722 0.2614 0.5448

2.8 0.1319 0.2406 0.2398 0.4909

where the form factor is

F (q) =
1

4π2 + x2

[
3x+

8π2

x
−

32π4

x2

1− e−x

4π2 + x2

]
, (18)

with x = qL. In the case of semiconductor heterojunc-
tions, the finite width effects are described by a variational
parameter in the ground-state wave function [27]. For van-
ishing depletion density the width parameter is given by
b = (33πn/2aB)1/3. The form factor modifying the bare
Coulomb interaction reads

F (q) =
1

(1 + x)3

[
1 +

9x

8
+

3x2

8

]
, (19)

where x = q/b. For both quantum-well and heterojunc-
tion cases, the first integral equation determining the co-
efficients is modified to

C2D
1 (rs)

C2D
2 (rs)

= r2/3
s

∫ ∞
0

dx [1− Sa(x)]F (x) , (20)

whereas the second equation for C2D
2 (rs) remains unchan-

ged. The form factor also enters the spin-antisymmetric
structure factor Sa(x), and introduces a slight modifica-
tion. Our results for the infinite quantum-well with width
L = aB (aB ' 100 Å for GaAs) and the heterojunction
with variational parameter b are listed in Table 3. As noted
by Gold and Calmels [7], the quantity qs/b = 2/(33/2)1/3

is independent of rs, and therefore the coefficients C2D
i (rs)

for heterojunctions are universal, depending solely on rs.
We observe that the finite extension of the 2D electron gas
in the perpendicular direction has very little effect on the
coefficient C2D

1 (rs) (compare with the results in Tab. 2).
However, the coefficient C2D

2 (rs) is affected quite signif-
icantly. In general the coefficients C2D

i (rs) increase with
finite width, small rs values being modified the most. The
full STLS equations are solved recently for a quasi-two-
dimensional electron gas (heterojunction) by Bulutay and
Tomak [28]. They found some differences between their
results and those of Gold and Calmels [7], which presum-
ably may be accounted for by the respective treatment
of depletion charge density and ionized acceptors in the
well-acting region, in these works.

6 Collective spin excitations

Collective excitations in an electron gas, may be studied
as complex poles of the density and spin-density response
functions χd,s(q, ω), or as peaks of the dynamic structure
factor S(q, ω). The calculation of the collective spin modes
is similar to that of density excitations [20]. Using the
spin-density response function in our model, we find for
the collective spin excitations (paramagnons)

ω2
q = [εq/S0(q)]2 − 2nεqvqGa(q). (21)

Note that the boson-like χMSA
0 is used in obtaining the

above expression. Gold and Calmels [7] in their discussion
of the plasmon modes within the same model, employed
the Lindhard expression χ0(q, ω). In Figure 7a we show
the dispersion ωq of the paramagnon peak in a 3D elec-
tron gas. The influence of spin-antisymmetric local-field
factor Ga(x) is to harden the spin collective mode ωq,
than its value evaluated within the Feynman approxima-
tion εq/S0(q). Both dispersion laws show a linear behavior
in q. Similar results are found for a 2D electron liquid as
illustrated in Figure 7b. The spin-density excitations, for
instance, in a 2D electron gas was measured by Pinczuk
et al. [29], and recently in dilute electron bilayers by Plaut
et al. [30] using inelastic light scattering experiments. We
do not attempt a direct comparison with the experimen-
tal results, since they are mostly performed at very small
wave vectors q for the local-field corrections to be dis-
tinctly significant. A more precise calculation would use
the Lindhard form of χ0(q, ω), in which case the damping
of the collective modes could also be studied.

7 Spin instabilities in layered structures

The existence of a charge-density wave (CDW) instability
in double-layer electron systems is predicted at a critical
layer separation [31]. Such instabilities are induced by the
exchange-correlation effects in both Fermi and Bose liq-
uids [32]. Similar behavior originating from spin-density
fluctuations are largely ignored. Intersubband spin-density
excitations and the phase transitions they induce have
been gaining attention with recent experimental [33] and
theoretical efforts [34] in the context of double-layer quan-
tum Hall systems. We briefly explore the conditions under
which a spin-density wave (SDW) instability evolves in a
double-layer electron system. The static spin susceptibil-
ity may be written as [35]

χs
±(q) =

χ0(q)

1 + [vqGa(q)± vqe−qd]χ0(q)
, (22)

in which the interlayer Coulomb interaction, vqe
−qd, is

used, but the interlayer correlation effects are ignored.
As in the density response in double-layer systems, in-
tralayer spin correlation effects are expected to dominate
the spin response. For more refined calculations it would
be possible to extend the formalism set out in Section 2,
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Fig. 7. The collective spin excitation energies (in
units of Es = q2

s /2m) (a) in a 3D electron gas, at
rs = 1 (dashed line) and rs = 4 (solid line); and
(b) in a 2D electron gas at rs = 0.5 (dashed line)
and rs = 1 (solid line). The dotted lines in both
cases indicate the Feynman spectrum εq/S(q).

for multicomponent systems and calculate both the in-
tralayer and interlayer local-field factors self-consistently.
The above expression for χs

±(q) is obtained by diagonaliz-
ing the spin response matrix for a double-layer system. A
SDW instability is identified when 1/χs

−(q = qc ≥ 0) = 0,
for some wave number qc. More explicitly, we have the
condition for a singular behavior in static spin suscepti-
bility

xc = r2/3
s [e−xcdqs −Ga(xc)]χ0(xc)/ρF , (23)

where xc = qc/qs, and ρF = m/π is the 2D density of
states at the Fermi level. Our equation (23) is the SDW
counterpart of Gold and Calmels’equation (53) [7] for
CDW instability. It differs from the CDW condition, in
the sense that a critical layer distance dc cannot be found.
dc was defined such that for d < dc the double-layer elec-
tron system exhibits instability. It appears that within
the present formalism SDW instabilities are predicted to
occur for any distance d, since we can find a solution of
equation (23) for all values of d. Taking the finite width
effects into account in the 2D electron layers would not
change this situation. We note, however, that this may be
due to the approximations involved.

8 Discussion

In this work we have solved the self-consistent equations
for Sa(q) and Ga(q) within the sum-rule version of the
STLS scheme. The STLS approximation provides a rea-
sonable improvement over the RPA for small densities. De-
spite the fact that the pair-correlation function becomes
negative for small values of r as rs increases, it has been
found that the STLS ground-state energies are in good
agreement with the Monte Carlo simulation results [36] in
the range 1 < rs < 20. The sum-rule version of the STLS
approach as developed by Gold and Calmels [7] has the
facility of reproducing most of the full STLS results with
analytical expressions for the static structure factor and
local-field correction. We have rederived the model Ss(q)
and Sa(q) introduced by Gold and Calmels [7], within the
generalized MSA. The analytical form of Ss(q) describes
the transition between the exchange effects for small rs
and correlation effects for large rs quite well as noted by
Gold and Calmels [7]. They attribute this to the local-field

factor being essentially a q-integral between zero and 2kF.
In the case of spin-density response, the self-consistent
calculations of Sa(q) and Ga(q) are plagued by numerical
problems beyond a certain rs value. This is not a short-
coming of the sum-rule version, since similar instabilities
are also encountered in the full STLS calculations [12].
Moudgil et al. [12] ascribe this to an instability developing
in the paramagnetic phase. We believe that the numerical
instabilities associated with the spin correlations mainly
come from the underlying Hartree-Fock (HF) nature of the
STLS. In contrast to the description of density correlations
which takes the RPA as reference (i.e., Gs(q) = 0 form),
the spin-response is basically built on the HF approxima-
tion. This is evident when we set Ga(q) = 0 in equation
(2). It is known that the HF approximation, even for the
density-response leads to unphysical instabilities which
are removed at the level of RPA or higher order approxi-
mations. Divergence in the spin-response of a 2D electron
gas was also found by Yarlagadda and Giuliani [37] in
various approximations. More elaborate theories of spin
correlations in 3D seem to indicate the existence of in-
stability at a much lower density (i.e., high rs) [14,38].
When the spin-symmetric and spin-antisymmetric local-
field corrections are constructed [13,15] using the exact
ground-state properties [36] of 3D and 2D electron gas,
no such unstable behavior is observed. We believe that
the instability predicted by the STLS needs to be ex-
plored (and possibly be overcome) by theories that go be-
yond the present mean-field approach. The present status
of the electron correlations, with particular emphasis on
the most up-to-date Monte Carlo simulations [39], was re-
viewed by Senatore and March [40]. The inadequacy of
the STLS approximation (and similar schemes) in not be-
ing able to describe the spin-dependent correlations was
recognized earlier and various improved schemes were for-
mulated [41]. In particular, the treatment of Utsumi and
Ichimaru [42] introduces parametrized expressions satis-
fying the spin-susceptibility sum-rule and the restrictions
on the short-range correlations demanded by the Pauli
principle.

That the numerical instabilities encountered in spin
correlations within the present approach would somewhat
limit its applicability. In ordinary metals (bulk) the rele-
vant density regime 1 < rs < 10, and in doped semicon-
ductors in two and three-dimensions, 0.1 < rs < 3, make
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the results of our calculations applicable to most exper-
imental situations. It has also been argued [43] that the
correlation effects are important in white dwarf stars for
0.001 < rs < 0.01.

A simplified attempt to go beyond the RPA has been
provided by the Hubbard approximation (HA) in which
only the exchange effects are taken into account by con-
sidering the Pauli hole around each electron. The corre-
sponding local-field factors in the HA may be obtained by
substituting the HF static structure factors in equation
(7). This prescription yields the same Gs(q) and Ga(q), a
result not substantiated by the STLS calculations.

The effects of disorder may be incorporated into the
present approximation in a phenomenological way. The
noninteracting susceptibility including the phenomenolog-
ical relaxation-time τ , within a number-conserving scheme
is given by [44]

χ0(q, ω; 1/τ) =
(ω + i/τ)χ0(q, ω + i/τ)

ω + (i/τ)χ0(q, ω + i/τ)/χ0(q, 0)

=
2nεq

ω(ω + i/τ)− [εq/S0(q)]2
, (24)

where the last equality holds when we use χMSA
0 in our

model. In the limit τ →∞, we recover the collision-free ex-
pression for χMSA

0 (q, ω; 1/τ → 0). The spin-antisymmetric
static structure factor is calculated to be

Sa(q) = (2/π)εqI(∆),

where

I(∆) = 2


1√
∆

[
π
2 − tan−1

(
1/τ√
∆

)]
for ∆ > 0,

τ for ∆ = 0,
1√
−∆

tanh−1
(

1/τ√
−∆

)
for ∆ < 0,

(25)

and ∆ = 4([εq/S0(q)]2 − 2nvqGa(q)εq) − 1/τ2. A similar
expression for the spin-symmetric static structure factor
Ss(q) in the presence of collisional broadening is straight-
forward to obtain. Equation (25) was earlier considered for
a charged Bose gas [45]. It could be interesting to solve the
self-consistent equation for the structure factor and local-
field correction with finite τ , to investigate the effects of
disorder. We point out that the STLS form of the local-
fields Gs,a(q) may also be modified to take the disorder
effects into account. Studies along these lines are largely
unexplored.

As a further application of the present work, we cal-
culate the static spin susceptibility χs(q). In this connec-
tion, we may either use the MSA or Lindhard expressions
for the noninteracting system χ0(q). As an illustration
we show in Figure 8 the static spin susceptibility χs(q)
for a 2D electron gas at rs = 1. The results indicated
by solid and dotted lines are evaluated using the MSA
and Lindhard forms of χ0(q), respectively. In both curves
the same Ga(q) is used. The dashed line shows the spin
susceptibility given by Iwamoto’s model [15]. Here, the
spin-antisymmetric local-field factor is constructed using

Fig. 8. The static spin response χs(q) as a function of q, for
rs = 1 in a 2D electron gas. Solid and dotted lines are calcu-
lated within the present model and χMSA

0 and Lindhard func-
tions, respectively. The dashed line is from reference [15].

the Monte Carlo correlation energies. We observe that for
large q, all models have similar behavior. They differ in
their prediction of the long-wavelength limit.

The sum-rule version of the STLS approximation is
also employed to study the exchange-correlation effects in
quasi-one-dimensional (Q1D) electron systems by Calmels
and Gold [8]. The self-consistent calculations of spin-sym-
metric static structure factor and local-field correction
Gs(q), were used to obtain ground state energy. Extending
our work to investigate the spin-antisymmetric structure
should be possible. This would again complement the work
of Calmels and Gold [8] in the description of spin depen-
dent ground state correlations in Q1D electron systems.
In Q1D systems, the Coulomb interaction is further char-
acterized a quantum wire width parameter, similar to the
Q2D systems, having a finite quantum well width. The
STLS nature of the present approximation is expected to
reveal spin instabilities around rs ∼ 1.

9 Summary

In summary, we have studied the spin-density correla-
tions in 2D and 3D electron liquids using the sum-rule
version of the STLS approximation. Our approach and
results are complementary to the recent investigation of
density correlations in the same systems by Gold and
Calmels [7]. Within the sum-rule version of STLS, the
spin-antisymmetric static structure factor and the local-
field correction are calculated in terms of rs-dependent
coefficients, in closed-form. They can be used along with
the spin-symmetric counterparts obtained by Gold and
Calmels [7] in more complex calculations and as input to
other theoretical approaches. Our calculations predict a
paramagnetic instability in electron liquids for lower den-
sities as in the full STLS method. A heuristic explanation
is given for this behavior. Collective spin excitations are
calculated. SDW instabilities in double-layer electron sys-
tems are investigated. Our results indicate that a SDW
would be present for all layer separations. It would be in-
teresting to develop calculational schemes that combines
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the simplicity of the present approach and the sum-rule
requirements demanded by microscopic considerations.
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